
Pyitect Documentation
Release 2.0.0

Benjamin Ryex Powers

August 25, 2015

Contents

1 Links 3
1.1 pyitect package . 3
1.2 Creating Plugins . 11
1.3 Setting up a Plugin system . 15
1.4 Useing Events . 17
1.5 ChangeLog . 19

2 Indices and tables 23

Python Module Index 25

i

ii

Pyitect Documentation, Release 2.0.0

A architect inspired plugin framework for Python 3 and Python >= 2.6

A simple Framework that Provides the facility to load Component form plugins.

Also binds a simple event system to bind functions to events on the system.

Contents 1

https://github.com/c9/architect

Pyitect Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Links

• GitHub: https://github.com/Ryex/pyitect

• PyPi: https://pypi.python.org/pypi/pyitect

• Travic-CI: https://travis-ci.org/Ryex/pyitect

• Docs: http://pyitect.readthedocs.org/en/latest/

Contents:

1.1 pyitect package

1.1.1 Submodules

pyitect.imports module

This is the shadow module used as a namespace for providing component to loading plugins during import

1.1.2 Module contents

Pyitect is a pluginframe work

class pyitect.Version
Version class imported directly from semantic_version

see the python-semanticversion project for more information.

class pyitect.Spec
Spec class imported directly from semantic_version

see the python-semanticversion project for more information.

class pyitect.System(config, enable_yaml=False)
A plugin system

It can scan dir trees to find plugins and their provided/needed components, and with a simple load call chain
load all the plugins needed.

The system includes a simple event system and fires some events internal, here are their signatures:

‘plugin_found’: (path, plugin) path (str): the full path to the folder containing the plugin

plugin (str): plugin version string (ie ‘plugin_name:version’)

3

https://github.com/Ryex/pyitect
https://pypi.python.org/pypi/pyitect
https://travis-ci.org/Ryex/pyitect
http://pyitect.readthedocs.org/en/latest/
https://github.com/rbarrois/python-semanticversion
https://github.com/rbarrois/python-semanticversion

Pyitect Documentation, Release 2.0.0

‘plugin_loaded’: (plugin, plugin_required, component_needed) plugin (str): plugin version string (ie ‘plu-
gin_name:version’)

plugin_required (str): version string of the plugin that required the loaded plugin (version string ie ‘plu-
gin_name:version’)

component_needed (str): the name of the component needed by the requesting plugin

‘component_loaded’: (component, plugin_required, plugin_loaded) component (str): the name of the com-
ponent loaded

plugin_required (str, None): version string of the plugin that required the loaded component (version string
ie ‘plugin_name:version’) (might be None)

plugin_loaded (str): version string of the plugin that the component was loaded from (version string ie
‘plugin_name:version’)

Pyitect keeps track of all the instances of the System class in System.systems which is a map of object id’s to
instances of System.

config
dict

A mapping of component names to version requirements

plugins
dict

A mapping of the plugins the system knows about. Maps names to dicts of Version s mapped to Plugin
config objects

components
dict

A mapping of Component.key() s to loaded component objects

component_map
dict

A mapping of components the system knows about. Maps names to dicts of Version s mapped to
Component config objects

loaded_plugins
dict

A mapping of Plugin.key() s to loaded plugin module objects

enabled_plugins
list

A list of Plugin.key() s of enabled plugins

using
list

A List of Component.key() s loaded by the system

events
dict

A mapping of event names to lists of callable objects

add_plugin(path)
Adds a plugin form the provided path

Parameters path (str) – path to a plugin folder

4 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

Rasies: PyitectError: If no plugin exists at path PyitectDupError: if you try to add the same plugin twice

bind_event(event, function)
Bind a callable object to the event name

a simple event system bound to the plugin system, bind a function on an event and when the event is fired
all bound functions are called with the *args and **kwargs passed to the fire call

Parameters

• event (str) – name of event to bind to

• function (callable) – Boject to be called when event fires

enable_plugins(*plugins)
Take one or more Plugin s and map it’s components

Takes a plugins metadata and remembers it’s provided components so the system is awear of them

Parameters

• plugins (plugins) – One or more plugins to enable.

• argument can it self be a list or map of (Each) – class:Plugin

• or a plain (objects) – class:Plugin object

Raises

• TypeError – If you try to pass a non Plugin object

• PyitectDubError – If you try to enable a plugin

• that provides duplicate conponent –

• PyitectOnEnableError – If There was an error in the on_enable

• PyitectLoadError – If there was an error loading a plugin

• to call it’s on_enable –

fire_event(event, *args, **kwargs)
Call all functions bound to the event name

and pass all extra *args and **kwargs to the bound functions

Parameters event (str) – name of event to fire

get_plugin_module(plugin, version=None)
Fetch the loaded plugin module

if version is None searches for the highest version number plugin with it’s module loaded if it can’t find
anything it raises a runtime error

Parameters

• plugin (str) – name of plugin to find

• version (None, str, Version) – if provided load a spesfic version

Returns loaded module object

Raises

• TypeError – if provideing a version that is not either a str or

• a – class:Version

• PyitectError – if the Plugin can’t be found

1.1. pyitect package 5

Pyitect Documentation, Release 2.0.0

• PyitectLoadError – plugin module is not loaded yet

is_plugin(path)
Test a path to see if it is a Plugin

Parameters path (str) – path to test

Returns: true if there is a plugin in the folder pointed to by path

iter_component_providers(comp, subs=False, vers=False, reqs=’*’)
An iterater function to interate providers of a component

Takes a conponent name and yeilds providers of the conponent

if subs is True yeilds providers of subtypes too

if vers is True yeilds all version of the provider not just the highest

reqs is a version requirement for the providers to meet. Defaults to any version

Parameters

• comp (str) – component name to use as a base

• subs (bool) – should subtypes be yeilded too?

• vers (bool) – should all version be yeilded not just the highest?

• reqs (str, list, tuple) – version spec string or list there of

• items are passed to a Spec (all) –

Raises TypeError – if comp or reqs are passed wrong

iter_component_subtypes(component)
An iterater function to interate all known subtypes of a component

Takes a conponent name and yeilds all known conponent names that are subtypes not including the con-
ponent name

Parameters conponent (str) – the conponent name to act as a base

Raises

• TypeError – if ‘‘component‘ is niether a

• :class – Component instance nor a string

load(component, requires=None, request=None, bypass=False)
Load and return a component object

processes loading and returns the component by name, chain loading any required plugins to obtain de-
pendencies. Uses the config that was provided on system creation to load correct versions, if there is a
conflict throws a run time error. bypass lets the call bypass the system configuration

Parameters

• component (str) – name of component to load

• requires (dict, None) – a mapping of component names

• version requierments to use during the load (to) –

• request (str, None) – the name of the requesting plugin.

• if not requested (None) –

• bypass (bool) – ignore the system configured version requierments

6 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

Returns the loaded component object

Raises

• TypeError – if thigns get passed worng

• PyitectLoadError – if there is an exception druing load

load_plugin(plugin, version, requires=None, request=None, comp=None)
Takes a plugin name and version and loads it’s module

finds the stored Plugin object takes a Plugin object and loads the module recursively loading declared
dependencies

Parameters

• plugin (str) – plugin name

• version (str, Version) – version to load

• requires (dict, None) – a mapping of component names

• version requierments to use during the load (to) –

• request (str, None) – name of the version string of the plugin

• requested a component from this plugin. (that) –

• if not requested. (None) –

• comp (str) – name of the component needed by teh requesting plugin.

• if not requested. –

Returns the loaded module object

Raises

• TypeError – if things get passed worng

• PyitectLoadError – if there is an exception during the load

resolve_highest_match(component, plugin, spec)
resolves the latest version of a component with requirements,

takes in a component name and some requierments and gets a valid plugin name and its highest version

Parameters

• component (str) – a component name

• plugin (str) – a plugin name if it’s empty we default to alphabetical order

• spec (Spec) – a SemVer version spec

Raises TypeError – if somthing isn’t the right type

search(path)
Search a path (dir or file) for a plugin in the case of a file it searches the containing dir.

Parameters path (str) – the path to search

systems = []
A list of all System instances

unbind_event(event, function)
Remove a function from an event

1.1. pyitect package 7

Pyitect Documentation, Release 2.0.0

removes the function object from the list of callables to call when event fires. does nothing if function is
not bound

Parameters

• event (str) – name of event bound to

• function (callable) – object to unbind

class pyitect.Plugin(config, path)
An object that can hold the metadata for a plugin

like its name, author, verison, and the file to be loaded ect. also stores the path to the plugin folder and provideds
functionality to load the plugin module and run its on_enable function

name
str

plugin name

author
str

plugin author

version
Version

plugin vesion

file
str

relative path to the file to import to load the plugin

consumes
dict

a listing of the components consumed

provides
dict

a listing of the components provided

on_enable
None, str

either None or a str doted name of a function in the module

path
str

an absolute path to the plugin folder

module
None, object

either None or the modlue object if the plugin has been loaded already

get_version_string()
returns a version string

has_on_enable()
returns True if it has an on_enable attribute that’s not None

8 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

key()
return a key that can be used to identify the plugin

Returns (name, author, version, path)

Return type tuple

load()
loads the plugin file and returns the resulting module

Raises

• PyitectLoadError – If there was a problem loading a plugin module

• PyitectNotProvidedError – If component is not provided

run_on_enable()
runs the function in the ‘on_enable’ if set

Raises

• TypeError – if the on_enable property is set wrong

• PyitectOnEnableError – if there is an exception

• acessing or calling the on_enable function –

• PyitectLoadError – If the module object is not loaded yet

class pyitect.Component(name, plugin, author, version, path)
An object to hold metadata for a spesfic instance of a component

Holds the metadata needed to identify a instance of a component provided by a plugin

name
str

the component name provided

plugin
str

the name of the providing plugin

author
str

the author of the providing plugin

version
Version

the verison of the providing plugin

path
str

a doted name path to the component object from the top of the plugin module

key()
returns a key to identify this component

Returns (name, plugin, author, version, path)

Return type tuple

pyitect.get_system()
Fetch the global system instance

1.1. pyitect package 9

Pyitect Documentation, Release 2.0.0

Raises PyitectError – If the system isn’t built yet

pyitect.build_system(config, enable_yaml=False)
Build a global system instance

Parameters

• config (dict) – A mapping of component names to version requirements

• enable_yaml (bool) – Should the system support yaml config files?

Raises PyitectError – if the system is already built

pyitect.destroy_system()
destroy the global system instance

does nothing if the system isn’t built

pyitect.issubcomponent(comp1, comp2)
Check if comp1 is a subtype of comp2

Returns whether the Component passed as comp1 validates as a subtype of the Component passed as comp2.

if strings are passed as either peramater they are treated as Component names. if a Component instance is passed
it’s name property is pulled.

Parameters

• comp1 (str, Component) – The Component or component name to check

• comp2 (str, Component) – The Component or component name to compair to

pyitect.get_unique_name(*parts)
Generate a fixed lenght unique name from parts

takes the parts turns them into strings and uses them in a sha1 hash

used internaly to ensure module object for plugins have unique names like so

get_unique_name(plugin.author, plugin.get_version_string())

Returns name hash

Return type str

pyitect.gen_version(version_str)
Generates an Version object

takes a SemVer string and returns a Version if not a proper SemVer string it coerces it

Parameters version_str (str) – version string to use

pyitect.expand_version_req(requires)
Take a requierment and return the Spec and the plugin name

takes a requierment and pumps out a plugin name and a SemVer Spec requires is either a string of the form (“”,
“*”, “plugin_name”, plugin_name:version_spec)

or a mapping with plugin and spec keys like so {“plugin”: “plugin_name”, “spec”: “>=1.0.0”} the spec key’s
value can be a string of comma seperated version requierments or a list of strings of the same

Parameters requires (str, mapping) – string or mapping object with plugin and spec keys

10 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

Examples

>>> expand_version_req("")
('', <Spec: (<SpecItem: * ''>,)>)
>>> expand_version_req("*")
('', <Spec: (<SpecItem: * ''>,)>)
>>> expand_version_req("plugin_name")
('plugin_name', <Spec: (<SpecItem: * ''>,)>)
>>> expand_version_req("plugin_name:>=1.0.0")
('plugin_name', <Spec: (<SpecItem: >= Version('1.0.0')>,)>)
>>> expand_version_req("plugin_name:>=1.0.0,<2.0.0")
('plugin_name', <Spec: (SpecItems... >= 1.0.0, < 2.0.0)>)
>>> expand_version_req({"plugin": "plugin_name", "spec": ">=1.0.0"})
('plugin_name', <Spec: (<SpecItem: >= Version('1.0.0')>,)>)

Raises

• ValueError – when the requierment is of a bad form

• TypeError – when the requiers objt is not a string or mapping

exception pyitect.PyitectError(*args, **kwargs)
Wraps Exceptions for Chained trace backs

As Pyitect is intended for use across pyhton 2 and 3 a way was needed to Ensure that exceptions caused during
the import of plugin modules tell why that import failed insed of just failed to import ‘bla’

This code is a modifed version of a CausedException class posed to ActiveState back in Sep. 2012 Licensed
under MIT license

the ability handle trees of exceptions was removed

http://code.activestate.com/recipes/578252-python-exception-chains-or-trees/?in=user-4182236

exception pyitect.PyitectNotProvidedError(*args, **kwargs)
Raised if a conponent is not provided

exception pyitect.PyitectNotMetError(*args, **kwargs)
Raised if requierments are not met

exception pyitect.PyitectLoadError(*args, **kwargs)
Raises if a plugins module is not yet loaded or fais to load

exception pyitect.PyitectOnEnableError(*args, **kwargs)
Raised if and on_enable call failes

exception pyitect.PyitectDupError(*args, **kwargs)
Raised if you try to add a duplicate plugin or duplicate component provider

1.2 Creating Plugins

Contents:

1.2.1 What is a Plugin?

A plugin to pyitect is simply a folder with a .json config file of the same name as the folder inside. If you have yaml
support enabled the extensions .yaml and .yml are also available

1.2. Creating Plugins 11

http://code.activestate.com/recipes/578252-python-exception-chains-or-trees/?in=user-4182236

Pyitect Documentation, Release 2.0.0

/Im-A-Plugin
Im-A-Plugin.json
file.py

/Im-A-Plugin2
Im-A-Plugin2.yaml
file.py

/Im-A-Plugin3
Im-A-Plugin3.yml
file.py

A plugin has a name, a version, an author, a module or package, and it provides Components used to build your
application. a component is simply an object which can be accessed from the imported module a plugin’s config file
provides information about the plugin as well as lists components it provides and components it needs on load

Here’s an example, most fields are mandatory but the consumes and provides CAN be left as empty containers

{
"name": "Im-A-Plugin",
"author": "author_name",
"version": "0.0.1",
"file": "file.py",
"on_enable": "on_enable_func",
"consumes": {

"foo" : "*"
},
"provides": {

"Bar": ""
}

}

Here is the same file in yaml

name: Im-A-Plugin
author: author_name
version: 0.0.1
file: file.py
on_enable: on_enable_func # optional, runs this function when the plugin is enabled
consumes:

foo: '*'
provides:

Bar: ''

Version numbers should conform to conformed to Semantic Versioning meaning that they should have a major, minor,
and patch number like so: major.minor.patch-prereleace+buildifo

• name -> the name of the plugin (No spaces)

• author -> the author of the plugin

• version -> a version for the plugin, a string that conformes to SemVer

• file -> a path to a function that will be called form the imported module after the plugin is loaded

• consumes -> a mapping of needed component names to version requierments, empty string = no requirement

• provides -> a mapping of provided component names to paths from the imported module, empty string = path
is component name

12 Chapter 1. Links

http://semver.org/
http://semver.org/

Pyitect Documentation, Release 2.0.0

1.2.2 Version Requirements

A plugin can provide version requirements for the components it’s importing. they take two forms, a version string or
a version mapping.

A version string is formatted like so

plugin_name:<version_requirements>

Both parts are optional and an empty string or a string containing only a ‘*’ means no requirement. If there is no
requirement specified then the highest available version will be selected from the first provider in alphabetical order.

if the version requirement is not give or given as * but the plugin name is then the highest available version will be
selected from the names plugin

A version requirement is a logical operator paired with a version number. Any number of requirements can be grouped
with commas.

Version numbers in requirements should also follow Semantic Versioning

Version requirement support is provided by the python-semanticversion project. specifically the Spec class. More
documentation can be found here.

Here are some examples of a version string

"" // no requirement
"*" // no requirement
"FooPlugin" // from this plugin and no other, but any version
"FooPlugin:*" // from this plugin and no other, but any version
"FooPlugin:==1" // from this plugin and no other, version 1.x.x
"FooPlugin:==1.0" // 1.0.x
"FooPlugin:==1.0.1" // version 1.0.1 or any post release
"FooPlugin:==1.0.1-pre123" // 1.0.1-pre123 -> this exact version
"FooPlugin:==1.2" // 1.2.x and any pre/post/dev release
"FooPlugin:>1.0" // greater than 1.0
"FooPlugin:>=1.2.3" // greater than or equal to 1.2.3
"FooPlugin:<=2.1.4" // less than or equal to 2.1.4
"FooPlugin:>1.0,<2.3" // greater than 1.0 and less than 2.3
"FooPlugin:>1.0,<=2.0,!=1.3.17" // between V1.0.x and V2.0.x but not V1.3.17

Version requirements can also be given a a mapping. The mapping must contain the keys plugin and spec but this can
allow for your requirement specification to be more clear.

Here is an example:

{
"name": "Im-A-Plugin2",
"author": "author_name",
"version": "0.0.1",
"file": "file.py",
"consumes": {

"foo" : {
"plugin": "special_plugin_name",
"spec": ">1.0,<=2.0,!=1.3.17"

}
},
"provides": {

"Bar": ""
}

}

1.2. Creating Plugins 13

http://semver.org/
https://github.com/rbarrois/python-semanticversion
http://python-semanticversion.readthedocs.org/en/latest

Pyitect Documentation, Release 2.0.0

The spec key can also be a list of version specifications

{
"consumes": {

"foo" : {
"plugin": "special_plugin_name",
"spec": [">1.0", "<=2.0,!=1.3.17"]

}
}

}

1.2.3 Letting Plugins Access Consumed Components

inside your plugin files you need to get access to your consumed components right? Here’s how you do it.

The plugin can pull it’s declared components from pyitect.imports during the import of the module or package.
pyitect.imports gets cleared after the import is done. So, the component imports from pyitect.imports
should be in the top level of the module, not on demand imports in the code.

if a plugin author needs access to components not declared in the config file for run time use - ie. to load component
on the fly - then they will need the system author to provide access to the plugin system instance.

1.2.4 Writing a Plugin

Writing a plugin for pyitect is simple.

First Create a folder to hold your plugin

Second Create a configuration file with the same name as the folder but with an extension. .json for a JSON config or
.yaml/.yml for a YAML config

Third Create your python module or package. Your plugin folder can even be your package folder

Forth Write up your config for the plugin

Point the file attribute to your module file or package. If it’s a package point it to the __init__.py. It doesn’t
matter if your module is pure python, byte-code compiled (.pyc) or a native extension (.pyd, .so)

A working plugin looks something like the following:

Folder Structure

/Im-A-Plugin
Im-A-Plugin.json
file.py

Im-A-Plugin.json

{
"name": "plugin_name",
"author": "author_name",
"version": "0.1.0",
"file": "<relative_path>",
"on_enable": "<optional_function_path>",
"consumes": {

"foo" : "*"
},
"provides": {

14 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

"Bar": ""
}

file.py

#file.py
from pyitect.imports import foo

class Bar(object):
def __init__():

foo("it's a good day to be a plugin")

1.3 Setting up a Plugin system

Setting up a plugin system is dead simple.

First create an instance of the System class

from pyitect import System
system = System()

The system class constructor takes two arguments, a configuration mapping and a yaml flag

The config mapping allows you to provide default requirements for components so if a call is made to
system.load() with no requirements of it’s own the requirements from the passed config are used.

The yaml flag of course enables yaml support for the plugin system. allowing configuration file to be written in yaml.
yaml support is not enabled by default because it requires the PyYAML library.

Next add some plugins to the system.

This can be done either by using the system.search() function to recursively search a directory for plugins.

Or added manualy by providing the path to a plugin folder to the system.add_plugin() function of your system
instance.

system.search("path/to/your/plugins/tree")
system.add_plugin("paht/to/a/plugin/folder")

Now that you have some plugin you still have to enable them.

Enabling a plugin maps out the components it provides and make them available for loading by the plugin system. Tt
does not load the plugin module or package unless there is an ‘on_enable‘ property in its configuration.

In which case, after the component are mapped and the plugin is enabled, the plugin module or package is loaded and
an attempt is made to follow the path given to the on_enable configuration property to a callable object (ie. function)
from the top level of the module or package and it is called passing only the Plugin configuration object for the
plugin.

To enable a plugin you needs it’s Plugin instance. these can be accessed from system.plugins

a simple way to get a list of them would be.

plugins = [system.plugins[n][v] for n in system.plugins for v in system.plugins[n]]

After you have your list of Plugin objects you can filer it how you want to enable only the plugins you want to. When
your ready.

system.enable_plugins(plugins)

1.3. Setting up a Plugin system 15

http://pyyaml.org/

Pyitect Documentation, Release 2.0.0

enable_plugins can take multiple objects and any individual can by a iterable or map of Plugin objects.

After you have some plugins enabled loading a provided component is as easy as

Bar = system.load("Bar")

The general idea is to create a system, search some path or paths for plugins and then enable them.

A plugin system can not be created without first creating an instance of the System class.

1.3.1 Global System

If you dont want to manage your plugin system instance yourself it is possible to have the pyitect module manage
your plugin system for you. Simply use the pyitect.build_system() function to construct your plugin system
inside pyitect. To later fetch your plugin system instance use pyitect.get_system(). To clean up and remove
the existing system use pyitect.destroy_system().

1.3.2 ‘on_enable’ Property

plugins can specify an on_enable property in their configuration. This is a doted name path to a function that is is
executed right after a plugin is enabled and its components have been mapped. This allows for special cases where
enabling a plugin requires more than just making it’s components available to be imported. For example is there is
some system setup to be done.

pyitect.build_system(config, enable_yaml=False)
system = pyitect.get_system()
... do stuff
end program / need fresh system?
pyitect.destroy_system()

1.3.3 Loading Plugins

Plugins are loaded on demand when a component is loaded via

system.load("<component name>")

a plugin can also be explicitly loaded via

system.load_plugin(plugin, version)

where plugin is the plugin name and version is the version

1.3.4 Tracking loaded Components

Pyitect tracks used components at anytime system.using can be inspected to find all components that have been
requested and from what plugins they have been loaded along with versions.

system.using is a list of component.key() s

>>> system.using
{

'component1' : {
'plugin1`: ['1.0.2']

},
'special_component1' : {

16 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

'special_plugin1': ['0.1.3'],
'special_plugin2': ['0.2.4', '1.0.1-pre3']

}
}

Pyitect also tracks enabled plugins system.enabeled_plugins is a mapping of plugin names to a mapping of
versions to Plugin objects.

Like so

>>> system.enabeled_plugins
{

"special_plugin1" : {
"Version('1.0.0')": Plugin('special_plugin1:1.0.0')

}
}

1.4 Useing Events

The plugin system also includes a simple event system bound to the system object, it simply allows one to register
a function to an event name and when system.fire_event is called it calls all registered functions passing the
extra *args and **kwargs to them.

pyitect fires some events internally so that you can keep track of when the system finds and loads plugins.

1.4.1 Using Events

Pyitect supplies three methods for dealing with events

System.bind_event

system.bind_event('name', Function)

Binds Function to the event ‘name’. when an event of ‘name’ is fired the function will be called wall all extra
parameters passed to the fire_event call.

System.unbind_event

system.unbind_event('name', Function)

Removes Function form the list of functions to be called when the event is fired

System.fire_event

system.fire_event('name', *args, **kwargs)

Fires the event ‘name’, calling all bound functions with *args and **kwargs

1.4.2 Events Fired Internally

plugin_found

A function bound to this event gets called every time a plugin is found during a search called an example is provided.

Example function to bind:

1.4. Useing Events 17

Pyitect Documentation, Release 2.0.0

def onPluginFound (path, plugin):
"""
path (str): the full path to the folder containing the plugin
plugin (str): plugin version string (ie 'plugin_name:version')
"""
print("plugin `%s` found at `%s`" % (plugin, path))

component_mapped

When a plugin is enabled it’s components are mapped out, this event is fired ever time that happens.

Example function to bind:

def onComponentMapped (component, plugin, version):
"""
component (str): the component name
plugin (str): plugin name
version (Version): the plugin version string less the plugin name
"""
print("component `%s` mapped form `%s@%s`" % (component, plugin, version))

plugin_loaded

A function bound to this event is called every time a new plugin is loaded during a component load.

Example function to bind:

def onPluginLoad (plugin, plugin_required, component_needed):
"""
plugin (str): plugin version string (ie 'plugin_name:version')
plugin_required (str): version string of the plugin that required the loaded plugin (version string ie 'plugin_name:version') (might be None)
component_needed (str): the name of the component needed by the requesting plugin
"""
print("plugin `%s` was loaded by plugin `%s` during a request for the `%s` component" % (plugin, plugin_required, component_needed))

component_loaded

A function bound to this event is called every time a component is successfully loaded example:

Example function to bind:

def onComponentLoad (component, plugin_required, plugin_loaded):
"""
component (str): the name of the component loaded
plugin_required (str): version string of the plugin that required the loaded component (version string ie 'plugin_name:version') (might be None)
plugin_loaded (str): version string of the plugin that the component was loaded from (version string ie 'plugin_name:version')
"""
print("Component `%s` loaded, required by `%s`, loaded from `%s`" % (component, plugin_required, plugin_loaded))

18 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

1.5 ChangeLog

1.5.1 v2.0.0 (2015-8-25)

• Large API incompatible update

• supports Python 2.6+

• now uses pyitect.imports for import time plugin loading

• version postfixes are replaced with component subtypes

• Uses SemVer processing via python-semanticversion project

• module overlap is prevented with unique model names in sys.modules

• no import modes, uses imp module for everything >= 3.3 and importlib for 3.4+

• ability to store global system instance in pyitect module

• support YAML for plugin configuration files

• Custom Exception classes with exception chain support

• fully fledge docs

1.5.2 v1.1.0 (2015-7-17)

• readme cleanup

• gen_version generates a version 2 tuple

• change on_enable to a callable path in the imported plugin module

1.5.3 v1.0.1 (2015-6-10)

• change out Version mechanism for a local parse method based off of LooseVersion

• update tests to proper unit tests

1.5.4 v1.0.0 (2015-6-9)

• change from parse_version from setuptools to LooseVersion in distutils

1.5.5 v0.9.2 (2014-9-28)

• Ensure plugin configuration json file is closed @svisser

1.5.6 v0.9.1 (2014-9-28)

• files loaded with exec give proper file path

• proper trace back given when component fail to load (even when it’s a recursion error)

• add component_mapped event

1.5. ChangeLog 19

https://github.com/rbarrois/python-semanticversion

Pyitect Documentation, Release 2.0.0

1.5.7 v0.9.0 (2014-9-27)

• add get_plugin_module method

1.5.8 v0.8.0 (2014-9-27)

• Added ability to run code when a plugin is enabled via “on_enable” property

1.5.9 v0.7.2 (2014-9-23)

• Fix name error in unbind and fire event commands

1.5.10 v0.7.0 (2014-9-21)

• plugins found with System.search are no longer auto enabeled

• use System.enable_plugins(<mapping>|<iterable>|<Plugin>) to enable plugins from System.plugins

• added Plugin class to main namespace

1.5.11 v0.6.2 (2014-9-13)

• relative imports now work so long as the target file for loading is named __init__.py to trigger python to treat
the plugin folder as a package

1.5.12 v0.6.1 (2014-9-13)

• re-factored System.load out to make use of two smaller functions, easyer to maintain

• added plugin loading modes, import for py3.4+ and exec for support of previous python version

1.5.13 v0.5.1 (2014-8-30)

• added ability to provide more than one version of a component in the same plugin with potfix mapping

• event system added, system fire events

• made requirement overwrite system defaults, removed bypass peram

• ittrPluginsByComponent lists potfix mappings too.

• tests updates to test all features

• README update

• This changelog added

1.5.14 v0.1.15 (2014-8-26)

• added ittrPluginsByComponent

• added bypass peram to System.load to bypass system default

20 Chapter 1. Links

Pyitect Documentation, Release 2.0.0

1.5.15 v0.1.10 (2014-8-25)

• First public release

1.5. ChangeLog 21

Pyitect Documentation, Release 2.0.0

22 Chapter 1. Links

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

Pyitect Documentation, Release 2.0.0

24 Chapter 2. Indices and tables

Python Module Index

p
pyitect, 3
pyitect.imports, 3

25

Pyitect Documentation, Release 2.0.0

26 Python Module Index

Index

A
add_plugin() (pyitect.System method), 4
author (pyitect.Component attribute), 9
author (pyitect.Plugin attribute), 8

B
bind_event() (pyitect.System method), 5
build_system() (in module pyitect), 10

C
Component (class in pyitect), 9
component_map (pyitect.System attribute), 4
components (pyitect.System attribute), 4
config (pyitect.System attribute), 4
consumes (pyitect.Plugin attribute), 8

D
destroy_system() (in module pyitect), 10

E
enable_plugins() (pyitect.System method), 5
enabled_plugins (pyitect.System attribute), 4
events (pyitect.System attribute), 4
expand_version_req() (in module pyitect), 10

F
file (pyitect.Plugin attribute), 8
fire_event() (pyitect.System method), 5

G
gen_version() (in module pyitect), 10
get_plugin_module() (pyitect.System method), 5
get_system() (in module pyitect), 9
get_unique_name() (in module pyitect), 10
get_version_string() (pyitect.Plugin method), 8

H
has_on_enable() (pyitect.Plugin method), 8

I
is_plugin() (pyitect.System method), 6
issubcomponent() (in module pyitect), 10
iter_component_providers() (pyitect.System method), 6
iter_component_subtypes() (pyitect.System method), 6

K
key() (pyitect.Component method), 9
key() (pyitect.Plugin method), 8

L
load() (pyitect.Plugin method), 9
load() (pyitect.System method), 6
load_plugin() (pyitect.System method), 7
loaded_plugins (pyitect.System attribute), 4

M
module (pyitect.Plugin attribute), 8

N
name (pyitect.Component attribute), 9
name (pyitect.Plugin attribute), 8

O
on_enable (pyitect.Plugin attribute), 8

P
path (pyitect.Component attribute), 9
path (pyitect.Plugin attribute), 8
Plugin (class in pyitect), 8
plugin (pyitect.Component attribute), 9
plugins (pyitect.System attribute), 4
provides (pyitect.Plugin attribute), 8
pyitect (module), 3
pyitect.imports (module), 3
PyitectDupError, 11
PyitectError, 11
PyitectLoadError, 11
PyitectNotMetError, 11
PyitectNotProvidedError, 11

27

Pyitect Documentation, Release 2.0.0

PyitectOnEnableError, 11

R
resolve_highest_match() (pyitect.System method), 7
run_on_enable() (pyitect.Plugin method), 9

S
search() (pyitect.System method), 7
Spec (class in pyitect), 3
System (class in pyitect), 3
systems (pyitect.System attribute), 7

U
unbind_event() (pyitect.System method), 7
using (pyitect.System attribute), 4

V
Version (class in pyitect), 3
version (pyitect.Component attribute), 9
version (pyitect.Plugin attribute), 8

28 Index

	Links
	pyitect package
	Creating Plugins
	Setting up a Plugin system
	Useing Events
	ChangeLog

	Indices and tables
	Python Module Index

